If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+45x=784
We move all terms to the left:
7x^2+45x-(784)=0
a = 7; b = 45; c = -784;
Δ = b2-4ac
Δ = 452-4·7·(-784)
Δ = 23977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-\sqrt{23977}}{2*7}=\frac{-45-\sqrt{23977}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+\sqrt{23977}}{2*7}=\frac{-45+\sqrt{23977}}{14} $
| 2(5x-2)+2x=5x-1+-1x | | 8=-2(5k+6) | | 2(x^-8)+7=-3 | | 2(x+5)+1=4x-2(-5+x) | | 31-8a=-7a+8(-8a-4) | | X-24-23+x=180 | | x-9/5=-1 | | 4(2x+1)=22+3(2x-5 | | 4x+2(1-3x)=17-5x | | 5)13-x)=15 | | 2(x-3)=-x+3 | | 9x-3=-2x+57 | | k+3/10=-1 | | 1.8-16.3=-1.9x+13.3 | | 2x+3(3x+2)=5x+5(x+2 | | (6+5i)-(4+31)=0 | | 3(1+8n=147 | | −2x−9=21x−21 | | 5(v-6)=-2-2v | | 2(x-2)+3x=9x-20 | | 7d−4d=15 | | 2(x^-8)7=-3 | | 5(20-x)=84 | | 1/2(x-10=7 | | -189=3(8n+1) | | 3m+26=6m-10-15m | | 108=-4+7x | | 2x-2+4x=6x-8 | | 100x+45=395 | | 4x−3x=10 | | -189=3(8n+1 | | x+2=-4-5x+8+4x |